现代决策树模型及其编程实践:从传统决策树到深度决策树 简介
本书围绕现代决策树模型, 通过原理解析、应用示例和完整的代码实现详细讲解决策树算法, 既涵盖必要的公式推导, 又考虑具体的应用需求。书中讨论的主要算法和技术包括: CART、ID3和C4.5等经典决策树算法, 代价复杂度剪枝、错误率降低剪枝和悲观错误剪枝等决策树剪枝方法, 随机森林的构造和参数调优, 套袋法、梯度提升法和堆叠法等集成学习方法, XGBoost、LightBoost和CatBoost等主流并行决策树, 常见蚁群算法、蚁群决策树算法和自适应蚁群决策森林, 深度森林、深度神经决策树和深度神经决策森林等深度决策树算法。并列题名: Modern decision tree models and their programming practices eng
关于我们 - 网站帮助 - 版权声明 - 友情连接 - 网站地图
本站所收录作品、社区话题、书库评论及本站所做之广告均属其个人行为,与本站立场无关
本站所有的作品,图书,资料均为网友更新,如果侵犯了您的权利,请与本站联系,本站将立刻删除(E-MAIL:847151540@qq.com)
Copyright © 2005-2016 www.gbook.cc All Rights Reserved.备案号